Tag Archives: Amazon’s Alexa

Amazon’s Alexa vs. Google’s Assistant: Same Questions, Different Answers

Excellent article by  .

Amazon’s Echo and Google’s Home are the two most compelling products in the new smart-speaker market. It’s a fascinating space to watch, for it is of substantial strategic importance to both companies as well as several more that will enter the fray soon. Why is this? Whatever device you outfit your home with will influence many downstream purchasing decisions, from automation hardware to digital media and even to where you order dog food. Because of this strategic importance, the leading players are investing vast amounts of money to make their product the market leader.

These devices have a broad range of functionality, most of which is not discussed in this article. As such, it is a review not of the devices overall, but rather simply their function as answer engines. You can, on a whim, ask them almost any question and they will try to answer it. I have both devices on my desk, and almost immediately I noticed something very puzzling: They often give different answers to the same questions. Not opinion questions, you understand, but factual questions, the kinds of things you would expect them to be in full agreement on, such as the number of seconds in a year.

How can this be? Assuming they correctly understand the words in the question, how can they give different answers to the same straightforward questions? Upon inspection, it turns out there are ten reasons, each of which reveals an inherent limitation of artificial intelligence as we currently know it…


Addendum to the Article:

As someone who has worked with Artificial Intelligence in some shape or form for the last 20 years, I’d like to throw in my commentary on the article.

  1. Human Utterances and their Correlation to Goal / Intent Recognition.  There are innumerable ways to ask for something you want.  The ‘ask’ is a ‘human utterance’ which should trigger the ‘goal / intent’ of what knowledge the person is requesting.  AI Chat Bots, digital agents, have a table of these utterances which all roll up to a single goal.  Hundreds of utterances may be supplied per goal.  In fact, Amazon has a service, Mechanical Turk, the Artificial Artificial Intelligence, which you may “Ask workers to complete HITs – Human Intelligence Tasks – and get results using Mechanical Turk”.   They boast access to a global, on-demand, 24 x 7 workforce to get thousands of HITs completed in minutes.  There are also ways in which the AI Digital Agent may ‘rephrase’ what the AI considers utterances that are closely related.  Companies like IBM look toward human recognition, accuracy of comprehension as 95% of the words in a given conversation.  On March 7, IBM announced it had become the first to hone in on that benchmark, having achieved a 5.5% error rate.
  2. Algorithmic ‘weighted’ Selection verses Curated Content.   It makes sense based on how these two companies ‘grew up’, that Amazon relies on their curated content acquisitions such as Evi,  a technology company which specialises in knowledge base and semantic search engine software. Its first product was an answer engine that aimed to directly answer questions on any subject posed in plain English text, which is accomplished using a database of discrete facts.   “Google, on the other hand, pulls many of its answers straight from the web. In fact, you know how sometimes you do a search in Google and the answer comes up in snippet form at the top of the results? Well, often Google Assistant simply reads those answers.”  Truncated answers equate to incorrect answers.
  3. Instead of a direct Q&A style approach, where a human utterance, question, triggers an intent/goal , a process by which ‘clarifying questions‘ maybe asked by the AI digital agent.  A dialog workflow may disambiguate the goal by narrowing down what the user is looking for.  This disambiguation process is a part of common technique in human interaction, and is represented in a workflow diagram with logic decision paths. It seems this technique may require human guidance, and prone to bias, error and additional overhead for content curation.
  4. Who are the content curators for knowledge, providing ‘factual’ answers, and/or opinions?  Are curators ‘self proclaimed’ Subject Matter Experts (SMEs), people entitled with degrees in History?  or IT / business analysts making the content decisions?
  5. Questions requesting opinionated information may vary greatly between AI platform, and between questions within the same AI knowledge base.  Opinions may offend, be intentionally biased, sour the AI / human experience.

AI Whispering Digital Co-Counsel for Any Litigation

Are you adequately prepared for your next litigation?  Going into court with an army of Co-Counsel making you feel more confident, more prepared?  Make sure you bring along the AI Whispering Digital Co-Counsel.  Co-Counsel that doesn’t break a sweat, get nervous, and is always prepared.  He even takes the opportunity to learn while on the job, machine learning.

The whispering digital agent for advising litigators “just-in-time” rebuttal citing historical precedence, for example.  Digital Co-Counsel analyzes the dialog within the courtroom to identify ‘goals’, the intent of the conversation(s).  The Digital Co-Counsel identifies the current workflow, which may be identified as Cross or Direct examination, Opening Statement, and Closing Argument.

Realtime observation of a court case and advice based on:
  • Observed dialog interactions between all parties involved in the case, such as opposing counsel,  witnesses, subject matter experts, may trigger “guidance” from the Digital Co-Counsel based on a compound of utterances, and identified workflow.
  • Court case evidence submitted may be digitized, and analyzed based on a [predetermined]combination of identified attributes of submitted evidence.  This evidence, in turn, may be rebutted, by counter arguments, alternate ‘perspectives’ or present “evidence” to rebut
  • The introduction of ‘bias’ toward the opposing council.**

Implementation of the Digital Co-Council may be through a Smartphone application, and use a bluetooth throughout the case.

My opinions are my own, and do not necessarily reflect my employer’s viewpoint.

AI Digital Assistant verse Search Engines

Aren’t AI Digital Assistants just like Search Engines? They both try to recognize your question or human utterance as best as possible to serve up your requested content. E.g.classic FAQ. The difference in the FAQ use case is the proprietary information from the company hosting the digital assistant may not be available on the internet.

Another difference between the Digital Assistant and a Search Engine is the ability of the Digital Assistant to ‘guide’ a person through a series of questions, enabling elaboration, to provide the user a more precise answer.

The Digital Assistant may use an interactive dialog to guide the user through a process, and not just supply the ‘most correct’ responses. Many people have flocked to YouTube for instructional type of interactive medium. When multiple workflow paths can be followed, the Digital Assistant has the upper hand.

The Digital Assistant has the capability of interfacing with 3rd parties (E.g. data stores with API access). For example, there may be a Digital Assistant hosted by Medical Insurance Co that has the ability to not only check the status of a claim, but also send correspondence to a medical practitioner on your behalf. A huge pain to call the insurance company, then the Dr office, then the insurance company again. Even the HIPPA release could be authenticated in real time, in line during the chat.  A digital assistant may be able to create a chat session with multiple participants.

Digital Assistants overruling capabilities over Search Engines are the ability to ‘escalate’ at any time during the Digital Assistant interaction. People are then queued for the next available human agent.

There have been attempts in the past, such as Ask.com (originally known as Ask Jeeves) is a question answering-focused e-business.  Google Questions and Answers (Google Otvety, Google Ответы) was a free knowledge market offered by Google that allowed users to collaboratively find good answers, through the web, to their questions (also referred as Google Knowledge Search).

My opinions are my own, and do not reflect my employer’s viewpoint.